Hemocyanins: Present and future relevance in superficial bladder carcinoma

Don Lamm, M.D.
Clinical Professor of Urology,
University of Arizona, and
Director, BCG Oncology,
(Bladder Cancer, Genitourinary Oncology)
Phoenix, AZ

BCGOnatology.com
KLH and Olsson’s Serendipitous Discovery

- 1970’s: Cellular immune response is shown to be important in cancer
- KLH: used to determine cellular response by skin test reaction
- 1974: Olsson immunizes 10 BT patients with 5mg KLH to determine immunocompetence
- No correlation possible: only 3/10 have BT recurrence, compared with 7/10 before KLH
KLH and Olsson’s Serendipitous Discovery

• 1974: Olsson follows with a controlled trial
• 9 get 5mg KLH sc, 10 controls
• Follow: 204 and 228 pt months, respectively
• Recurrence 1/9 (11%) with KLH versus 7/10(70%) with control. A 59% reduction of tumor recurrence with a single, innocuous cutaneous immunization!

KLH and Olsson’s Serendipitous Discovery

- Olsson did not pursue his finding. Why? Moving from Boston (Boston U) to New York (Columbia U) he lost his data.
- We evaluated KLH in the animal model, publishing positive results in 1981, but believed BCG was more effective ...
- Klippel and Jurincic, hearing Olsson lecture in Germany, developed KLH from animal models to clinical trials*

KLH Immune Effects

- Studies in 9 animal species show strong cellular and humoral immune stimulation
- Doses ranging from 0.0025 to 250mg/kg
- Lymphoblastogenesis, T cells, KLH specific T helper cells, Macrophages, Basophils, IgA, IgG, IgM
- Toll immunity
- Thomsen Freidenreich Antigen
Anti-Tumor Effects of KLH in Animal Models

• Following Olsson’s demonstration of significant reduction in BT recurrence with ID KLH immunization, animal studies have consistently demonstrated and confirmed the anti-tumor efficacy of KLH. In summary:
 – Pre-immunization and intralesional KLH inhibits transplanted bladder cancer
 – Endotoxin enhances the efficacy of KLH
 – Combination therapy, eg KLH plus IL-2, Ifn alpha or Ifn gamma improves response: as high as 100% with Interferon alpha +KLH
 – Minimal dose/response relationship exists
 – Minimal toxicity observed

• Local immune response and anti-tumor effect is confirmed, but what about the **systemic** effect reported by Olsson?
Immunotherapy of Murine Bladder Cancer (MBT2) Using Immunotheel KLH Derivative Without Pre-Immunization
(Treatment Days = 1, 3, 5, 7, 9, 11, and 14)
Immunotherapy of Murine Bladder Cancer (MBT2) Using Immucothel KLH Derivative Without Pre-Immunization

(Treatment Days = 1, 3, 5, 7, 9, 11, and 14)
Immunotherapy of Murine Bladder Cancer Using KLH and LPS

- High LPS
- Purified KLH
- Crude KLH
- pKLH + LPS
- Low LPS
- Saline
- BCG

Graph showing tumor incidence over days from tumor transplantation.
Anti-Tumor Effects of KLH in Animal Models

• Following Olsson’s demonstration of significant reduction in BT recurrence with ID KLH immunization, animal studies have consistently demonstrated and confirmed the anti-tumor efficacy of KLH. In summary:
 – Pre-immunization and intralesional KLH inhibits transplanted bladder cancer
 – Endotoxin enhances the efficacy of KLH
 – Combination therapy, eg KLH plus IL-2, Ifn alpha or Ifn gamma improves response: as high as 100% endotoxin + purified KLH
 – Minimal dose/response relationship exists
 – Minimal toxicity observed

• Local immune response and anti-tumor effect is confirmed, but what about the systemic effect reported by Olsson?
Evidence of *Systemic* KLH Immunity to Bladder Cancer

- BBN 0.05% in drinking water: bladder cancer model in rats.
- 1mg KLH s.c. plus 12.5 intraves significantly reduces BT formation.*
- Pre-sensitization 1mg KLH followed by twice weekly 1mg SC or 12.5mg intraves beginning on day 15: 50% tumor in SC group compared with 74% in the intravesical group!**

*Recker and Rubben, 1989 **Linn and Rubben et al., 1998
Hemocyanin

Clinical Studies
KLH Uncontrolled Trials

- 548 patients with Ta, T1, T2 TCC or CIS followed for an average of 21.5 months
- 28.5% recurrence at 21.5 months
- **CIS**: Jurincic’1995: 52% CR (11/21)
- **CIS**: Bassi’2000: 50% CR (14/28)
- **CIS**: Lamm’2000: 50% CR (9/18) CIS alone plus 33% (4/12) in CIS plus papillary TCC
<table>
<thead>
<tr>
<th>Stage</th>
<th>CR (N)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIS</td>
<td>9</td>
<td>50%</td>
</tr>
<tr>
<td>Ta, T1, CIS</td>
<td>4</td>
<td>33%</td>
</tr>
<tr>
<td>Ta, T1</td>
<td>3</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>36%</td>
</tr>
</tbody>
</table>
Side Effects of KLH in 54 Evaluable Patients

<table>
<thead>
<tr>
<th>Symptom</th>
<th>KLH</th>
<th>*BCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dysuria</td>
<td>24%</td>
<td>60%</td>
</tr>
<tr>
<td>Hematuria</td>
<td>7%</td>
<td>26%</td>
</tr>
<tr>
<td>Malaise</td>
<td>7%</td>
<td>33%</td>
</tr>
</tbody>
</table>

*Contemporary series
KLH in CIS/Residual Papillary Papillary TCC

<table>
<thead>
<tr>
<th>Dose</th>
<th>CR (N)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 mg</td>
<td>4</td>
<td>29%</td>
</tr>
<tr>
<td>2.0 mg</td>
<td>8</td>
<td>42%</td>
</tr>
<tr>
<td>10 mg</td>
<td>4</td>
<td>29%</td>
</tr>
<tr>
<td>50 mg</td>
<td>6</td>
<td>35%</td>
</tr>
<tr>
<td>Total:</td>
<td>22</td>
<td>34%</td>
</tr>
</tbody>
</table>

No dose/response observed. All patients received the same 1mg dose of S.C. KLH!
KLH in Refractory TCC

<table>
<thead>
<tr>
<th>Dose</th>
<th>CR (N)</th>
<th>CR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4 mg</td>
<td>1</td>
<td>25%</td>
</tr>
<tr>
<td>2.0 mg</td>
<td>3</td>
<td>30%</td>
</tr>
<tr>
<td>10 mg</td>
<td>3</td>
<td>30%</td>
</tr>
<tr>
<td>50 mg</td>
<td>2</td>
<td>29%</td>
</tr>
<tr>
<td>Total:</td>
<td>9</td>
<td>26%</td>
</tr>
</tbody>
</table>
KLH Controlled Clinical Trials

- 393 patients in 8 trials; 188 KLH, 205 other
- KLH: 25.7% recurrence, 21.1 months, versus 41.0% recurrence with chemo, TUR, or BCG
- BCG: 14% rec. (3/21) vs. 41% (7/17) KLH
- MMC: 33% (21/64) vs. 13% (9/71), p<0.01
- KLH vs. Chemo/non- BCG: 24% vs 44% rec.
KLH vs Mitomycin C

<table>
<thead>
<tr>
<th>Author/yr</th>
<th>N</th>
<th>KLH</th>
<th>% rec</th>
<th>MMC</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klippel’85</td>
<td>50</td>
<td>3/30 (10%)</td>
<td>(20%)</td>
<td>4/20</td>
<td>NS</td>
</tr>
<tr>
<td>Jurincic’88</td>
<td>44</td>
<td>3/21 (14%)</td>
<td>(39%)</td>
<td>9/23</td>
<td>0.05</td>
</tr>
<tr>
<td>Al-Naieb’90</td>
<td>41</td>
<td>3/20 (15%)</td>
<td>(38%)</td>
<td>8/21</td>
<td>NS</td>
</tr>
<tr>
<td>Total:</td>
<td>135</td>
<td>9/71 (13%)</td>
<td>(33%)</td>
<td>21/64</td>
<td>0.01</td>
</tr>
</tbody>
</table>
What is the Future of Hemocyanins in Bladder Cancer?

• Systemic efficacy in bladder cancer was first reported in 1974 by Olsson and HAS BEEN CONFIRMED IN ANIMAL MODELS!

• Percutaneous hemocyanin appears to be effective in CIS, and therefore may be effective in upper tract TCC

• Hemocyanin should be tried as an adjuvant to cystectomy- with or without chemotherapy!
Conclusions

• Hemocyanins have a broad range of beneficial immune effects, both cellular and humoral

• KLH is clearly effective in the prevention and treatment of bladder cancer

• Unlike BCG, KLH appears to have a very significant systemic effect

• While hemocyanins may be less effective than BCG in the treatment of local TCC, they are clearly less toxic
Conclusions

• Hemocyanins, like other immunotherapies, appear to be more effective when used in combination with other immunotherapy

• With a systemic effect:

• Hemocyanins should be studied as an adjuvant to the treatment of upper tract TCC

• Hemocyanins should be studied as an adjuvant to cystectomy.
Thanks,
Don Lamm, Phoenix

BCGOnctology.com